GUJARAT TECHNOLOGICAL UNIVERSITY B. E. SEMESTER: VI Civil Engineering

Subject Name: Applied Fluid Mechanics Subject Code: 160602

Teaching Scheme			Evaluation Scheme			
Theory	Tutorial	Practical	Total	University Exam (Theory) (E)	Mid Sem Exam (Theory) (M)	Practical (I)
3	0	2	5	70	30	50

Module I :

Sr. No	Course Content	Total Hours.
1.	Behavior Of Real Fluids:	10
	Governing Equations of Fluid Dynamics, Navier-Stokes equation of motion- Initial and boundary conditions.	
	Steady Viscous Flow: Couette Flow, Hagen-Poiseuille flow between parallel plates and tubes, Flow around a cylinder	
	Turbulent Flow: Reynolds equations of motion for turbulent flow-Prandtl's mixing length theory -Turbulent flow in pipes –velocity distribution from Prandtl's hypothesis smooth and rough boundaries.	
	Unsteady Flow in pipes: oscillation of liquids- water hammer equations.	

Module II :

Sr. No	Course Content	Total Hours.
1.	Boundary Layer:	9
	Boundary layer concept-laminar and turbulent boundary layer growth over a flat plate, Von-Karman momentum integral equation- Separation of boundary layer	
	Regimes of external flow-wakes and drag-Drag on immersed body-sphere- cylinder-bluff body-Lift and Magnus effect.	

Sr. No	ule III : Course Content	Total Hours.
1.	Open Channel Flow:	10
	Basic concept of open channel flow- Steady uniform flow-Velocity distribution- Optimum shape of cross section for uniform flow- Energy equation-specific energy-specific energy diagram-discharge diagram-Application of specific energy and discharge diagrams	
	Non-Uniform steady flow-equations for gradually varied flow- Direct Step method, Rapidly varied flow- Hydraulic jump- Location of hydraulic jump- flow under sluices-Water surface profiles.	

Module IV :

Sr. No	Course Content	Total Hours.
1.	Turbomachinery:	10
	 Water Turbines: Impulse turbine-Reaction turbines- Significance of specific speed-Unit quantities, Concept of performance characteristics for water turbines Centrifugal pumps: Pumps in series and parallel, Specific speed, Unit quantities, and characteristics curves, Cavitation in turbines and pumps. 	
	Ventilation System: Ventilation requirements, Natural and Mechanical ventilation.	

Module V :

Sr. No	Course Content	Total Hours.
1.	Dimensional Analysis and Similitude:	9
	Dimensional Analysis:-	
	Fundamental dimensions-Physical Quantity and Dimensions-Dimensional Homogeneity- Non Dimensional parameters, π -Theorem dimensional analysis, Choice of variables, Determination of Dimensionless parameters. Model Similitude-Physical models- geometric-kinematic and dynamic similarity, Model studies.	

Laboratory Assignments:

- 1. Experiments on Analogy- Analog Methods: Electrical Analogy-Viscous Analogy
- 2. Experiments Related to Pipe Flow: Friction Factor And Reynolds Number, Water Hammer Pressure Wave Propagation
- 3. Experiments Related to Turbulent Flow: Anemometry, Boundary Shear Stress
- 4. Experiments on Boundary Layer:
 - a. Use of Wind Tunnel For Pressure Distribution Around a Cylinder/ Airfoil
 - b. Determination of Drag Coefficient For Various Objects
- 5. Experiments Related to Open Channel Flow:
 - a. Velocity Distribution in Open Channel
 - b. Uniform Flow in Open Channel
 - c. Standing Wave or Hydraulic Jump
- 6. Experiments on Rotodynamic Machines
 - a. Performance Characteristics of Centrifugal Pump
 - b. Performance Characteristics of Water Turbines
- 7. Similitude and Model Studies
- 8. Numerical Experiments: Computer programming and simulation

Text Books:

- 1. Dr. A.K. Jain, Fluid Mechanics, Khanna Publishers, New Delhi
- 2. P.N. Modi and S.M. Seth, Hydraulics and Fluid Mechanics, Standard Book House, New Delhi
- 3. K L Kumar, Engineering Fluid Mechanics, Eurasin Pub. House New Delhi

Reference Books:

- 1. Victor L. Streeter, E. B. Wylie Fluid Mechanics , McGraw Hill Publication
- 2. Ven Te Chow, Open Channel Hydraulics, McGraw Hill Publication
- 3. Hunter Rouse , Engineering Hydraulics, John Wiley & Sons, New York
- 4. Frank M White, Fluid Mechanics , McGraw Hill Publication